
Collaborative Scheduling 
Using JMS in a Mixed Java and 

.NET Environment
Yeou-Fang Wang, Ph.D.

Allan Wax
Ray Lam

John Baldwin
Chet Borden

JPL/CalTech



Overview

• A proof-of-concept prototype successfully 
demonstrated a collaborative scheduling 
solution for future NSAS Deep Space Network 
application

• A prototype distributed computing environment 
was established for collaborative scheduling

• Java Message Service (JMS) was used in a 
mixed Java and .NET environment for 
messaging



Agenda

• NASA Deep Space Network scheduling
• Collaborative scheduling concept
• Distributed computing environment
• Platform concerns in a distributed 

environment
• Messaging and data synchronization
• The prototype
• Conclusion



NASA Deep Space Network (DSN)

30+ missions

Scheduling is to arrange antenna times for space flight missions and ground-
based science observations (requirements) under certain restrictions (constraints)

Requirement: N tracks every M days, Complex pattern-based coverage,
Antenna arraying, Multiple Spacecraft Per Antenna, …

Constraint:
Mission: Viewperiod, Horizon mask, Setup/teardown, …
Combined: BOT, RFI, …

Ground assets: Antenna, Equipment, Downtimes, …

Goldstone, CA
Canberra, Australia
Madrid, Spain



DSN Scheduling Users
• DSN schedulers:

– Schedule owner
– Prepare maintenance schedule
– Coordination

• Space flight project schedulers:
– Provide requirements
– Negotiation and proposals
– Submit changes

• Station operators:
– Carry out schedule
– Handle contingency and anomalies



Current Scheduling System

• Mainly a manual process with software 
support

• Long-range, mid-range, near-real-time 
processes handled by different groups

• Various tools are deployed for each 
process

• Meetings to resolve conflicts



Future Scheduling System
• Seamless scheduling for all planning horizons
• A master schedule always exists, visible to all users
• Requirements and schedules are fully traceable
• Conflicts are resolved at the lowest level possible in a 

peer-to-peer fashion
• Meetings are called only as needed
• Workspace is provided to users to develop 

requirements and for what-if analysis
• Distinguish global (shared) workspace and local 

(private) workspace
• Private workspace may span a set of peers
• Need scalability (loading, # users, # assets) and 

extensibility (evolving technology)
• Intelligent assistants for decision support



Collaborative Scheduling Concept

• Decision Makers (DM): DSN schedulers, project 
schedulers, managers, operators, …

• Every one knows their specific requirements and 
constraints

• No single DM makes decisions for others 
(distributed decision making)

• DMs share information
• Shared responsibility to create a successful 

schedule
• Work as a team to resolve conflicts



Collaborative Scheduling Prototype Features

• Single master schedule shared by all users
• Conflict-aware scheduling
• Dynamic workspace/static workspace
• Private workspace with limited sharing
• Scenario management for comparison
• Synchronous/Asynchronous collaboration (e.g. conflict 

resolution, negotiation)
• Ownership and workflow management
• Data synchronization
• Messaging/notification/alert
• Intelligent assistant
• Traceability
• Distributed computing environment



Distributed Computing Environment

• Objective: To connect users and resources in a 
transparent, open, and scalable manner.
– Transparency: distributed experts are working 

together as if they are co-located
– Openness: provides each project with a continually 

open environment that enables interaction with other 
projects until a satisfactory condition exists. 

– Scalability: The solution should be able to 
accommodate changes in the number of user projects 
and ground resources in the DSN domain. 



Architecture

• Data
• Data access
• Legacy information
• Business logic
• Web services
• Messaging
• Client interfaces

JAVA
App

.NET
App

Web
Server/
pages

Web
services

JMS

Data
objects

Agents

Brokers

DB

Legacy
systems



Platform concerns
in a distributed environment

• Distributed computing environment should be 
open and flexible for multiple frameworks.

• JAVA and .NET are two major players now:
– It is expected that they will reach a 50-50 market 

share by the end of this year (based on articles from 
Gartner, Meta group, ZDNet, …). Each will probably 
share 30%-40% market.

– Java: large-scale enterprise, multi-platform
– .NET: small/mid-size development, easy to use, 

performance/speed advantage
• There may be other frameworks emerging in the 

future
• Take advantage of each framework based on 

our needs



Possible Cross-Platform Solutions

• Java: through virtual machines for many 
platforms

• .NET and Mono: provides the necessary 
software to develop and run .NET client 
and server applications on Linux, Solaris, 
Mac OS X, Windows, and Unix. 

• Mainsoft: .NET to J2EE
• Others such as Qt (Trolltech) 



Messaging & Data Synchronization

• Collaboration requires instant 
communication

• All users are notified in real-time regarding 
data changes

• JMS is used for centralized messaging
• Time synchronization is the base for data 

synchronization
• Keep messages in messaging bus and 

keep data in data bus



Prototype Implementation

• Use SOAP/XML-based Web services
• Agents and backend are implemented 

using .NET
• Web services are in ASP.NET
• Clients are in Java and .NET
• JMS for messaging
• IKVM is used for .NET to communicate 

with JMS



IKVM
• IKVM.NET is an implementation of Java 

for Mono and the Microsoft .NET 
Framework.

• It includes
– a Java Virtual Machine implemented in .NET
– a .NET implementation of the Java class 

libraries and
– tools that enable Java and .NET 

interoperability.
• Using IKVM, we can take advantages from 

both Java and .NET



The Prototype
• Database

– Master schedule
– Dynamic workspace/static workspace
– Time-based ownership
– Traceability information

• Middle-tier
– Conflict-aware scheduling
– Private workspace sharing
– Scenario management for comparison
– Synchronous/Asynchronous collaboration (e.g. conflict resolution & 

negotiation)
– Workflow management
– Data synchronization
– Notification/alert

• Web services wrapper
• Clients

– Java client for schedule viewing with dynamic update under user’s control
– .NET Integrated Analysis Environment for complete analysis experience
– Web pages to view schedule



Java Client



.NET Integrated Analysis Environment



Web Page



How this works
Server(s)Server(s)

Database

1. Proposal
2. Share with B*
4. Request*

A B C

Message

5. See request
6. Approve

if it owns*

* Trigger server to send message

3. Sync

JMS

Data

Proposed change with ownership and no conflict: automatically accepted and sync
Proposed change without ownership: workflow & ownership determine approval process



Conclusion
• We have prototyped a collaborative 

environment for DSN scheduling and 
successfully proved the concept

• DSN scheduling is a system that involves 
multiple agents

• Collaborative scheme needs to be 
developed in a multi-agent environment

• Efficient communication and data 
synchronization is a key for collaboration


	Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment 
	Overview
	Agenda
	NASA Deep Space Network (DSN)
	DSN Scheduling Users
	Current Scheduling System
	Future Scheduling System
	Collaborative Scheduling Concept
	Collaborative Scheduling Prototype Features
	Distributed Computing Environment
	Architecture
	Platform concerns�in a distributed environment
	Possible Cross-Platform Solutions
	Messaging & Data Synchronization
	Prototype Implementation
	IKVM
	The Prototype
	Java Client
	.NET Integrated Analysis Environment
	Web Page
	How this works
	Conclusion

